metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Poly[pentaaquatetrakis(μ_2 -nicotinato- $\kappa^2 N$:O)(perchlorato- κ O)lanthanum(III)-disilver(I)]

Biao Guan,^a Chao-Hua Zhang^b and Wen-Dong Song^{c*}

^aLaboratory and Facility Management Division, Guang Dong Ocean University, Zhanjiang 524088, People's Republic of China, ^bSchool of Food Science and Technology, Guang Dong Ocean University, Zhanjiang 524088, People's Republic of China, and ^cCollege of Science, Guang Dong Ocean University, Zhanjiang 524088, People's Republic of China Correspondence e-mail: songwd60@126.com

Received 13 May 2009; accepted 5 July 2009

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.011 Å; disorder in main residue; R factor = 0.049; wR factor = 0.090; data-to-parameter ratio = 14.1.

In the title complex, $[Ag_2La(C_6H_4NO_2)_4(ClO_4)(H_2O)_5]_n$, the La^{III} atom, lying on a twofold rotation axis, is eightcoordinated by four O atoms from four nicotinate (nic) ligands and four water molecules in a distorted squareantiprismatic coordination geometry. The Ag^I atom is coordinated in an almost linear fashion by two pyridyl N atoms of two nic ligands. The linear coordination is augmented by weak interactions with one O atom from a half-occupied ClO₄⁻ anion and a water molecule lying on a twofold axis. Two $Ag(nic)_2$ units connect two La atoms, forming a cyclic unit. These units are further extended into an infinite zigzag chain. The chains are bridged by the disordered perchlorate ions via weak Ag-O [2.678 (2) Å] interactions. $O-H \cdots O$ hydrogen bonds, weak Ag···Ag [3.3340 (15) Å] interactions and $\pi - \pi$ interactions between the pyridyl rings [centroid-centroid distance = 3.656(2) Å] lead to a three-dimensional network.

Related literature

For related structures see: Evans & Lin (2001); Luo et al. (2004).

 $V = 6522.8 (15) \text{ Å}^3$

Mo $K\alpha$ radiation

 $0.30 \times 0.25 \times 0.22 \text{ mm}$

15911 measured reflections

2999 independent reflections

2251 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

 $\mu = 2.64 \text{ mm}^-$

T = 298 K

 $R_{\rm int} = 0.067$

48 restraints

 $\Delta \rho_{\text{max}} = 1.90 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.97 \text{ e } \text{\AA}^{-3}$

Z = 8

Experimental

Crystal data

 $\begin{bmatrix} Ag_{2}La(C_{6}H_{4}NO_{2})_{4}(ClO_{4})(H_{2}O)_{5} \end{bmatrix} \\ M_{r} = 1032.59 \\ Orthorhombic, Cmca \\ a = 35.140 (5) Å \\ b = 12.3371 (16) Å \\ c = 15.046 (2) Å$

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{min} = 0.465, T_{max} = 0.567$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.049$ $wR(F^2) = 0.090$ S = 1.952999 reflections 212 parameters

Table 1

Selected bond lengths (Å).

La1-O1	2.511 (5)	Ag1-N2	2.161 (6)
La1-O3 ⁱ	2.401 (4)	Ag1-O6	2.681 (2)
La1 - O1W	2.498 (5)	Ag1 - O3W	2.877 (6)
La1-O2W	2.494 (4)	Ag1-Ag1 ⁱⁱ	3.3352 (14)
Ag1-N1	2.175 (6)		

Symmetry codes: (i) $x, -y + \frac{3}{2}, z - \frac{1}{2}$; (ii) x, -y + 1, -z + 1.

Table 2		
TT	In a second	

Hydrogen-bond geometry (Å, °).

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
	$\begin{array}{c} 01W - H1W \cdots 02^{iii} \\ 01W - H2W \cdots 04^{ii} \\ 02W - H3W \cdots 02^{iv} \\ 02W - H4W \cdots 02^{v} \\ 03W - H5W \cdots 01W^{vi} \end{array}$	0.86 0.84 0.84 0.84 0.84 0.82	1.85 1.80 1.92 1.89 2.11	2.667 (6) 2.611 (7) 2.738 (7) 2.693 (7) 2.883 (5)	159 161 165 161 157

Symmetry codes: (ii) x, -y + 1, -z + 1; (iii) $-x + \frac{1}{2}, y, -z + \frac{1}{2}$; (iv) $-x + \frac{1}{2}, y + \frac{1}{2}, z$; (v) x, -y + 2, -z + 1; (vi) $x, -y + \frac{3}{2}, z + \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008) and *DIAMOND* (Brandenburg, 1999); software used to prepare material for publication: *SHELXTL*.

The authors acknowledge Guang Dong Ocean University for support of this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2200).

References

Brandenburg, K. (1999). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Bruker (2007). *APEX2* and *SAINT*. Bruker AXS Inc., Madison, Wisconsin, USA.

Evans, O. R. & Lin, W. B. (2001). Chem. Mater. 13, 3009-3017.

Luo, J. H., Jiang, F. L., Wang, R. H., Han, L., Lin, Z. Z., Cao, R. & Hong, M. C. (2004). J. Mol. Struct. 707, 211–216.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2009). E65, m896-m897 [doi:10.1107/S1600536809026130]

Poly[pentaaquatetrakis(μ_2 -nicotinato- $\kappa^2 N:O$)(perchlorato- κO)lanthanum(III)disilver(I)]

B. Guan, C.-H. Zhang and W.-D. Song

Comment

In the structural investigation of nictinate complexes, it has been found that nictinate functions as a multidentate ligand with versatile binding and coordination modes (Evans & Lin, 2001; Luo *et al.*, 2004). In this paper, we report the crystal structure of the title compound, a new La^{III} complex, resulted from the hydrothermal treatment of La₂O₃, AgNO₃, perchloric acid and nicotinic acid in water.

As depicted in Fig. 1, the La^{III} atom, lying on a twofold rotation axis, is surrounded by four O atoms from four nic ligands and four water molecules in a distorted square-antiprismatic coordination geometry. The Ag^I atom is coordinated in an almost linear fashion by two pyridyl N atoms of two nic ligands. The linear coordination is augmented by weak interactions with one O atom from a half-occupied ClO₄⁻ anion and a water molecule lying on a twofold rotation axis. The two pyridyl rings of the nic ligands coordinating to the Ag atom are alomost coplanar and have a dihedral angle of 1.74 (2)°. Two Ag(nic)₂ units connect two La atoms, forming a cyclic unit. These cycles are further extended into an infinite zigzag chain. The chains are bridged by disordered perchlorate ions *via* the weak Ag—O [2.678 (2) Å] interactions into a two-dimensional wavelike layer in the *b* axis direction (Fig. 2). Finally, the layers are further self-assembled into a three-dimensional supramolecular network (Fig. 3) *via* O—H…O hydrogen bonds involving the coordinated water molecules and carboxylate O atoms from the nic ligands (Table 1), weak Ag…Ag [3.3340 (15) Å] interactions and π - π stacking interactions between the pyridyl rings [centroid–centroid distance = 3.656 (2) Å].

Experimental

A mixture of La_2O_3 (0.162 g, 0.5 mmol), AgNO₃ (0.169 g, 1 mmol), nicotinic acid (0.123 g, 1 mmol), HClO₄ (0.12 ml) and H₂O (10 ml) was placed in a 23 ml Teflon-lined reactor, which was heated to 433 K for 3 d, and then cooled to room temperature at a rate of 10 K h⁻¹. The pale-purple crystals obtained were washed with water and dried in air (yield 46% based on La).

Refinement

H atoms on C atoms were positioned geometrically and treated as riding on the parent C atoms, with C—H = 0.93 Å, and with $U_{iso}(H) = 1.2U_{eq}(C)$. H atoms of water molecules were located in difference Fourier maps and refined as riding atoms, with $U_{iso}(H) = 1.5U_{eq}(O)$. The perchlorate anion is disordered with an occupancy factor of 0.5. The hightest peak in final difference map is located 1.00 Å from La1 and the deepest hole is located 0.94 Å from La1.

Figures

Fig. 1. The asymetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) 1/2 - x, y, 1/2 - z; (ii) x, 1 - y, 1 - z; (iii) x, 3/2 - y, -1/2 + z; (iv) 1/2 - x, 3/2 - y, 1 - z.]

Fig. 2. View of the two-dimensional wavelike layer of the title compound. Dashed lines denote weak Ag…O interactions.

Poly[pentaaquatetrakis(μ_2 -nicotinato- $\kappa^2 N$:O)(perchlorato- κ O)lanthanum(III)disilver(I)]

$[Ag_2La(C_6H_4NO_2)_4(ClO_4)(H_2O)_5]$	$F_{000} = 4016$
$M_r = 1032.59$	$D_{\rm x} = 2.103 {\rm ~Mg~m}^{-3}$
Orthorhombic, Cmca	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -C 2bc 2	Cell parameters from 3600 reflections
a = 35.140(5) Å	$\theta = 1.4 - 28^{\circ}$
b = 12.3371 (16) Å	$\mu = 2.64 \text{ mm}^{-1}$
c = 15.046 (2) Å	T = 298 K
$V = 6522.8 (15) \text{ Å}^3$	Block, colorless
Z = 8	$0.30 \times 0.25 \times 0.22 \text{ mm}$

Data collection

2999 independent reflections
2251 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.067$
$\theta_{\rm max} = 25.2^{\circ}$
$\theta_{\min} = 2.2^{\circ}$
$h = -42 \rightarrow 41$
$k = -14 \rightarrow 11$
$l = -18 \rightarrow 15$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.049$	H-atom parameters constrained
$wR(F^2) = 0.090$	$w = 1/[\sigma^2(F_o^2)]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.95	$(\Delta/\sigma)_{\rm max} = 0.008$
2999 reflections	$\Delta \rho_{\text{max}} = 1.90 \text{ e } \text{\AA}^{-3}$
212 parameters	$\Delta \rho_{\rm min} = -0.96 \text{ e } \text{\AA}^{-3}$
48 restraints	Extinction correction: none
Primary atom site location: structure-invariant direct methods	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
Lal	0.2500	1.08273 (5)	0.2500	0.02358 (16)	
Ag1	0.389767 (18)	0.60965 (6)	0.56481 (4)	0.0465 (2)	
C1	0.3039 (2)	0.9196 (6)	0.3991 (4)	0.0299 (18)	
C2	0.34312 (19)	0.8866 (6)	0.4214 (5)	0.0318 (18)	
C3	0.3495 (2)	0.7964 (6)	0.4729 (4)	0.0331 (19)	
H3	0.3287	0.7591	0.4956	0.040*	
C4	0.4138 (2)	0.8140 (8)	0.4627 (5)	0.053 (3)	
H4	0.4380	0.7896	0.4770	0.064*	
C5	0.4097 (2)	0.9060 (8)	0.4114 (7)	0.071 (3)	
Н5	0.4311	0.9430	0.3913	0.085*	
C6	0.3744 (2)	0.9422 (7)	0.3905 (5)	0.048 (2)	
H6	0.3714	1.0039	0.3557	0.057*	
C7	0.4322 (2)	0.4349 (7)	0.6693 (6)	0.054 (3)	
H7	0.4534	0.4729	0.6489	0.065*	
C8	0.3685 (2)	0.4135 (6)	0.6768 (5)	0.0313 (18)	
H8	0.3444	0.4376	0.6605	0.038*	
C9	0.37074 (19)	0.3248 (6)	0.7314 (4)	0.0288 (18)	
C10	0.4064 (2)	0.2925 (7)	0.7546 (6)	0.060 (3)	
H10	0.4098	0.2331	0.7919	0.072*	
C11	0.4374 (2)	0.3480 (8)	0.7226 (7)	0.078 (4)	
H11	0.4619	0.3257	0.7375	0.094*	
C12	0.3359 (2)	0.2677 (6)	0.7620 (5)	0.0292 (17)	
N1	0.38410 (17)	0.7606 (5)	0.4913 (4)	0.0369 (16)	
N2	0.39810 (17)	0.4670 (5)	0.6458 (4)	0.0375 (16)	
01	0.30034 (13)	0.9960 (4)	0.3448 (3)	0.0366 (13)	
O2	0.27688 (13)	0.8707 (4)	0.4351 (3)	0.0331 (13)	
O3	0.30462 (12)	0.3020 (4)	0.7338 (3)	0.0328 (12)	
O4	0.33989 (13)	0.1890 (5)	0.8112 (3)	0.0432 (15)	
O1W	0.28251 (13)	0.9406 (4)	0.1593 (3)	0.0373 (14)	

supplementary materials

H1W	0.2679	0.9115	0.1204	0.056*	
H2W	0.2983	0.8959	0.1795	0.056*	
O2W	0.24825 (13)	1.1647 (4)	0.4015 (3)	0.0478 (14)	
H3W	0.2385	1.2269	0.4029	0.072*	
H4W	0.2620	1.1535	0.4461	0.072*	
O3W	0.32305 (14)	0.5000	0.5000	0.074 (3)	
H5W	0.3086	0.5297	0.5356	0.111*	
C11	0.5030 (4)	0.6862 (4)	0.5923 (4)	0.0816 (15)	0.50
O5	0.5071 (4)	0.8007 (6)	0.5862 (9)	0.118 (3)	0.50
O6	0.4640 (3)	0.6544 (14)	0.5835 (10)	0.118 (3)	0.50
O7	0.5133 (4)	0.6545 (12)	0.6849 (7)	0.118 (3)	0.50
O8	0.5275 (4)	0.6292 (12)	0.5351 (9)	0.118 (3)	0.50

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Lal	0.0267 (3)	0.0230 (3)	0.0210 (3)	0.000	-0.0014 (3)	0.000
Ag1	0.0542 (4)	0.0386 (4)	0.0466 (4)	0.0050 (4)	-0.0029 (3)	0.0150 (3)
C1	0.043 (4)	0.027 (5)	0.020 (4)	0.006 (4)	-0.007 (4)	-0.007 (3)
C2	0.034 (4)	0.032 (5)	0.028 (4)	-0.004 (4)	-0.004 (4)	-0.004 (4)
C3	0.032 (4)	0.036 (5)	0.030 (4)	0.005 (4)	0.000 (4)	0.010 (4)
C4	0.038 (5)	0.061 (8)	0.060 (6)	-0.003 (5)	-0.004 (4)	0.024 (5)
C5	0.033 (5)	0.075 (9)	0.105 (9)	-0.004 (5)	-0.001 (5)	0.049 (7)
C6	0.044 (5)	0.052 (7)	0.047 (5)	-0.006 (4)	-0.011 (4)	0.029 (4)
C7	0.033 (5)	0.051 (7)	0.078 (7)	-0.004 (4)	-0.002 (5)	0.026 (5)
C8	0.029 (4)	0.037 (5)	0.028 (4)	0.002 (4)	-0.001 (3)	-0.004 (4)
C9	0.033 (4)	0.028 (5)	0.025 (5)	0.003 (4)	-0.006 (3)	-0.001 (4)
C10	0.039 (5)	0.055 (6)	0.087 (7)	-0.002 (4)	-0.007 (5)	0.040 (6)
C11	0.027 (5)	0.069 (8)	0.139 (10)	-0.003 (5)	-0.007 (5)	0.059 (7)
C12	0.035 (4)	0.025 (5)	0.027 (5)	-0.003 (3)	0.004 (4)	-0.010 (4)
N1	0.037 (4)	0.037 (5)	0.037 (4)	0.002 (4)	-0.004 (3)	0.011 (3)
N2	0.040 (4)	0.033 (4)	0.040 (4)	0.004 (3)	0.004 (3)	0.008 (3)
01	0.041 (3)	0.031 (4)	0.038 (3)	0.006 (2)	-0.005 (3)	0.013 (3)
O2	0.037 (3)	0.036 (4)	0.027 (3)	-0.002 (2)	0.001 (2)	0.005 (2)
O3	0.027 (3)	0.033 (3)	0.038 (3)	0.007 (2)	-0.004 (2)	-0.002 (2)
O4	0.037 (3)	0.038 (4)	0.054 (4)	-0.004 (3)	-0.007 (3)	0.021 (3)
O1W	0.039 (3)	0.034 (4)	0.039 (3)	0.007 (2)	-0.010 (2)	-0.009 (2)
O2W	0.073 (3)	0.046 (4)	0.025 (3)	0.026 (3)	-0.017 (3)	-0.009 (2)
O3W	0.050 (5)	0.123 (10)	0.048 (6)	0.000	0.000	-0.011 (5)
C11	0.044 (3)	0.069 (3)	0.132 (4)	0.015 (5)	0.044 (5)	0.014 (3)
05	0.075 (5)	0.108 (7)	0.172 (8)	0.003 (5)	0.005 (5)	0.035 (6)
06	0.075 (5)	0.108 (7)	0.172 (8)	0.003 (5)	0.005 (5)	0.035 (6)
07	0.075 (5)	0.108 (7)	0.172 (8)	0.003 (5)	0.005 (5)	0.035 (6)
	0.075(5)	0.100(7)	0.172(9)	0.002(5)	0.005 (5)	0.025 (()

La1—01 2.511 (5) C7—C11 1.352 (11)

La1—O3 ⁱ	2.401 (4)	С7—Н7	0.9300
La1—O1W	2.498 (5)	C8—N2	1.317 (8)
La1—O2W	2.494 (4)	C8—C9	1.371 (10)
Ag1—N1	2.175 (6)	С8—Н8	0.9300
Ag1—N2	2.161 (6)	C9—C10	1.360 (9)
Ag1—O6	2.681 (2)	C9—C12	1.484 (10)
Ag1—O3W	2.877 (6)	C10—C11	1.375 (11)
Ag1—Ag1 ⁱⁱ	3.3352 (14)	C10—H10	0.9300
C1—O1	1.254 (8)	C11—H11	0.9300
C1—O2	1.249 (8)	C12—O4	1.230 (8)
C1—C2	1.475 (9)	C12—O3	1.253 (8)
C2—C6	1.378 (10)	O3—La1 ⁱⁱⁱ	2.401 (4)
С2—С3	1.373 (10)	O1W—H1W	0.8564
C3—N1	1.324 (8)	O1W—H2W	0.8388
С3—Н3	0.9300	O2W—H3W	0.8404
C4—N1	1.306 (9)	O2W—H4W	0.8395
C4—C5	1.379 (11)	O3W—H5W	0.8241
С4—Н4	0.9300	Cl1—O8	1.4076
C5—C6	1.354 (10)	Cl1—O5	1.4226
С5—Н5	0.9300	CII_06	1.4309
Co—H6	0.9300	CII—07	1.4925
C7—N2	1.512 (9)		
$O3^{111}$ —La1—O3 ¹	107.4 (2)	N1—C4—H4	119.5
O3 ⁱⁱⁱ —La1—O2W ^{iv}	82.65 (16)	С5—С4—Н4	119.5
O3 ⁱ —La1—O2W ^{iv}	69.35 (15)	C4—C5—C6	119.8 (8)
O3 ⁱⁱⁱ —La1—O2W	69.35 (15)	C4—C5—H5	120.1
O3 ⁱ —La1—O2W	82.65 (16)	С6—С5—Н5	120.1
O2W ^{iv} —La1—O2W	132.1 (2)	C2—C6—C5	119.2 (8)
O3 ⁱⁱⁱ —La1—O1W	146.78 (15)	С2—С6—Н6	120.4
O3 ⁱ —La1—O1W	89.71 (15)	С5—С6—Н6	120.4
O2W ^{iv} —La1—O1W	76.96 (16)	N2—C7—C11	121.5 (8)
O2W—La1—O1W	142.66 (15)	N2—C7—H7	119.2
O3 ⁱⁱⁱ —La1—O1W ^{iv}	89.71 (15)	С11—С7—Н7	119.2
O3 ⁱ —La1—O1W ^{iv}	146.78 (15)	N2—C8—C9	124.5 (7)
O2W ^{iv} —La1—O1W ^{iv}	142.66 (15)	N2—C8—H8	117.8
O2W—La1—O1W ^{iv}	76.96 (16)	С9—С8—Н8	117.8
O1W—La1—O1W ^{iv}	90.8 (2)	C10—C9—C8	116.2 (7)
O3 ⁱⁱⁱ —La1—O1 ^{iv}	75.34 (16)	C10—C9—C12	122.7 (7)
O3 ⁱ —La1—O1 ^{iv}	139.26 (15)	C8—C9—C12	121.1 (6)
O2W ^{iv} —La1—O1 ^{iv}	70.81 (16)	C9—C10—C11	119.7 (8)
O2W—La1—O1 ^{iv}	132.40 (16)	С9—С10—Н10	120.2
O1W—La1—O1 ^{iv}	73.32 (16)	C11-C10-H10	120.2
O1W ^{iv} —La1—O1 ^{iv}	71.89 (16)	C7—C11—C10	119.7 (8)
O3 ⁱⁱⁱ —La1—O1	139.26 (15)	C7—C11—H11	120.1

supplementary materials

;			1001
O3 ¹ —La1—O1	75.34 (16)	C10-C11-H11	120.1
O2W ^{iv} —La1—O1	132.40 (16)	O4—C12—O3	124.7 (7)
O2W—La1—O1	70.81 (16)	O4—C12—C9	117.9 (7)
O1W—La1—O1	71.89 (16)	O3—C12—C9	117.4 (7)
O1W ^{iv} —La1—O1	73.32 (16)	C4—N1—C3	119.7 (7)
O1 ^{iv} —La1—O1	129.6 (2)	C4—N1—Ag1	121.8 (5)
N2—Ag1—N1	175.3 (2)	C3—N1—Ag1	118.5 (5)
N2—Ag1—Ag1 ⁱⁱ	70.66 (16)	C7—N2—C8	118.4 (7)
N1—Ag1—Ag1 ⁱⁱ	113.42 (17)	C7—N2—Ag1	121.4 (5)
O6—Ag1—N2	88.67 (6)	C8—N2—Ag1	120.0 (5)
O6—Ag1—N1	88.06 (7)	C1—O1—La1	139.5 (5)
O3W—Ag1—N1	98.95 (17)	C12—O3—La1 ⁱⁱⁱ	150.2 (5)
O3W—Ag1—N2	85.33 (16)	La1—O1W—H1W	113.1
O3W—Ag1—O6	157.70 (7)	La1—O1W—H2W	124.4
O1—C1—O2	124.7 (7)	H1W—O1W—H2W	111.6
O1—C1—C2	116.7 (7)	La1—O2W—H3W	113.8
O2—C1—C2	118.6 (7)	La1—O2W—H4W	130.5
C6—C2—C3	117.6 (7)	H3W—O2W—H4W	111.4
C6—C2—C1	122.1 (7)	O8—Cl1—O5	113.3
C3—C2—C1	120.3 (7)	O8—Cl1—O6	113.1
N1—C3—C2	122.5 (7)	O5—Cl1—O6	111.3
N1—C3—H3	118.7	O8—Cl1—O7	106.8
С2—С3—Н3	118.7	O5—Cl1—O7	107.2
N1—C4—C5	121.1 (8)	O6—Cl1—O7	104.5
	is a constant		

Symmetry codes: (i) x, -y+3/2, z-1/2; (ii) x, -y+1, -z+1; (iii) -x+1/2, -y+3/2, -z+1; (iv) -x+1/2, y, -z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	$D -\!\!\!-\!\!\!\!- \!$
O1W—H1W···O2 ^{iv}	0.86	1.85	2.667 (6)	159
O1W—H2W···O4 ⁱⁱ	0.84	1.80	2.611 (7)	161
$O2W$ — $H3W$ ··· $O2^v$	0.84	1.92	2.738 (7)	165
O2W—H4W···O2 ^{vi}	0.84	1.89	2.693 (7)	161
O3W—H5W…O1W ^{vii}	0.82	2.11	2.883 (5)	157
Symmetry codes: (iv) $-x+1/2$, y , $-z+1/2$; (ii) x , $-y+1$, $-z+1$; (v) $-x+1/2$, $y+1/2$, z ; (vi) x , $-y+2$, $-z+1$; (vii) x , $-y+3/2$, $z+1/2$.				

Fig. 1

Fig. 2

